Quantitative Analysis by Energy Dispersive X-ray Fluorescence by the Transmission Method Applied to Geological Samples
نویسنده
چکیده
Three certified samples of different matrices (Soil-5, SL-1/IAEA and SARM-4/SABS) were quantitatively analysed by energy dispersive X-ray fluorescence with radioisotopic excitation. The observed errors were about 10-20% for the majority of the elements and less than 10% for Fe and Zn in the Soil-5, Mn in SL-1, and Ti, Fe and Zn in SARM-4 samples. Annular radioactive sources of Fe-55 and Cd-109 were utilized for the excitation of elements while a Si(Li) semiconductor detector coupled to a multichannel emulation card inserted in a microcomputer was used for the detection of the characteristic X-rays. The fundamental parameters method was used for the determination of elemental sensitivities and the irradiator or transmission method for the correction of the absorption effect of characteristic X-rays of elements on the range of atomic number 22 to 42 (Ti to Mo) and excitation with Cd-109. For elements in the range of atomic number 13 to 23 (Al to V) the irradiator method cannot be applied since samples are not transparent for the incident and emergent X-rays. In order to perform the absorption correction for this range of atomic number excited with Fe-55 source, another method was developed based on the experimental value of the absorption coefficients, associated with absorption edges of the elements.
منابع مشابه
Investigation and Measurement of Ash Content of Coal in Zirab Coal Mine-Iran Using Dual Energy -Ray and X-Ray Fluorescence Methods
Coal with low ash content has an important role in the coal and steel industry. There are different methods to measure the ash content. The conventional method which is used in most coal mines of Iran, is to burn the coal and measure the remaining ash. A new method has been recently developed at Nuclear Research Center (NRC) of Iran, Which works on the basis of the absorption of the dual en...
متن کاملSynthesis of nanocrystalline BaTiO3 ceramics via hydrothermal condition and structural characterization by HRTEM and SAED
In the present work, we report a suitable approach for the preparation of BaTiO3 nanostructures via the hydrothermal condition using Dolapix ET85 as surfactant. The powders were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), field emission transmission electron microscopy (FETEM), selected area electron diffra...
متن کاملSynthesis of nanocrystalline BaTiO3 ceramics via hydrothermal condition and structural characterization by HRTEM and SAED
In the present work, we report a suitable approach for the preparation of BaTiO3 nanostructures via the hydrothermal condition using Dolapix ET85 as surfactant. The powders were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), field emission transmission electron microscopy (FETEM), selected area electron diffra...
متن کاملDehydrogenation of Isobutane Over Nanoparticles of Pt/Sn Alloy on Pt/Sn/Na-Y Catalyst: The Effect of Tin Precursor on the Catalyst Behavior
In this research Na-Y was synthesized by hydrothermal method and used as support for preparation of Sn/Pt/Na-Y catalysts using two different tin precursors, Bu3Sn(Cl) and SnCl2.2H2O, by sequential impregnation, in which the Pt was deposited first and in the next step Sn was deposited. The catalysts were characterized by H2 chemisorption, transmis...
متن کاملGreen Synthesis of Zinc Oxide Nanoparticles using Garlic skin extract and Its Characterization
Plant-mediated synthesis of metal oxide nanoparticles is a promising alternative to the traditional method of physical and chemical synthesis. In this paper, we report the green synthesis of zinc oxide nanoparticles (ZnONPs) by a biological method. During the study, Zinc oxide nanoparticles were synthesized by Allium sativum skin (garlic skin) extract. Formation of zinc oxide nanoparticles has ...
متن کامل